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Abstract
Subtleties in the electronic structure of complex materials can be directly observed, in great
detail, by means of the Bragg diffraction of x-rays whose energy matches an atomic resonance.
Strange atomic multipoles can be encountered in the interpretation of measured Bragg
intensities, e.g., chirality and magnetic charge. Additionally, the x-ray technique allows the
direct observation of the enantiomorphic screw-axis in chiral crystals, such as tellurium, low
quartz and berlinite.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Up to a certain point it is useful to describe the motif of
magnetic moments in a crystal by a cartoon in which vectors,
representing dipole moments, are placed at sites occupied by
magnetic ions. For many magnetic materials such a cartoon
conveys but a small fraction of essential information about
the distribution of charge and magnetism that depend on
angular anisotropy in unfilled electron states. In general,
therefore, a family of multipoles, consisting of monopoles,
dipoles, quadrupoles, etc, is required for a comprehensive
representation of electron degrees of freedom.

Resonant x-ray Bragg diffraction exposes multipoles in
a crystal with directness of purpose not available with any
other experimental method in the science of materials. Seminal
observations of this diffraction came from Templeton and
Templeton [1] and Finkelstein et al [2], with timely theoretical
analyses by Dmitrienko [3] and Carra and Thole [4]. In
2005, Dmitrienko et al [5] surveyed experiments on non-
magnetic materials utilizing resonant diffraction. At about
the same time, Lovesey et al [6] and Collins et al [7]
shaped theoretical concepts in resonant x-ray diffraction and
absorption by both non-magnetic and magnetic materials.
Coexistence of spontaneous order in the charge and the
magnetic degrees of freedom of electrons is a multiferroic
modification of properties of intense current interest in
materials science [8–12]. There are counterintuitive atomic
properties whose existence summons in to play strange

electron variables. These are not ornaments in an ephemeral
theory but entities significant to an atomic theory of
electron properties and, also, directly observed in x-ray
diffraction [6, 7].

We endeavour in this article to gather, necessarily in
succinct form, principal concepts and tools currently employed
in the analysis of observations made on electrons in crystals
with the resonant diffraction of x-rays. Firmly established
concepts and tools are illustrated in a survey of published data
gathered on a few materials of particular current interest in
the science of materials. Additionally, we strive to convey
emerging science; discoveries about electronic properties of
complex materials and concepts they beget now develop
extremely rapidly. In sections 3, 4.3, appendices A and B
we report results that have not previously been published. To
help avoid in the paper too much of a confused medley of
observations, ideas and technical stuff appendix C contains
comments on some of it. Thus we move ahead in the certain
knowledge that the reader has at hand a summary of definitions
and technical stuff essential to our exposition.

If the site in the crystal used by the resonant ion is
a centre of inversion symmetry parity-odd multipoles are
forbidden. Allowed, parity-even multipoles possess a one-to-
one correspondence between rank, K , and sign with respect
to time-reversal, namely, time-odd (time-even) multipoles
have odd (even) rank. Also, parity-even multipoles with
even K originate from true-tensors, and multipoles with odd K
originate from pseudo-tensors. In particular, the parity-even
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Table 1. Shown are cameo composite operators of rank K = 0
(scalar or monopole), 1 (dipole) and 2 (quadrupole) which can be
used to represent time-odd (magneto-electric; GK ) and time-even
(polar; UK ) multipoles that arise in the E1–M1, parity-odd resonant
event. See appendix C for additional information. Basic operators
are; R position (polar vector), μ magnetic moment = L + 2S (axial
vector), and Ω = (μ × R − R × μ) anapole operator. Electric and
magnetic dipole operators, E1 and M1, can be represented by R and
μ, respectively. Composite operators with even-rank are
pseudo-tensors, and tensors of odd-rank are true-tensors. It can be
shown that μ · R = 2S · R and μ ·Ω = 4iS · R. Mean values of the
magneto-electric and polar monopoles are magnetic charge and
chirality, or helicity, respectively, which are pseudo-scalars. For
comparison, operators TK suitable for the E1–E1, parity-even
resonant event are included. With K = 2 the symbol ⊗ denotes a
tensor product.

Tensor rank K 0 1 2
Magneto-electric; GK μ · R Ω {μ ⊗ R}2

Polar; UK μ ·Ω R {Ω ⊗ μ}2

Parity-even; TK 1 μ {μ ⊗ μ}2

multipole with K = 1 is a time-odd pseudo-vector (axial
vector) proportional to the magnetic moment associated with
the ion as in table 1.

When the centre of inversion symmetry is absent, parity-
odd multipoles can be different from zero and such multipoles
with even K are pseudo-tensors and those with odd K are
true-tensors. Parity-odd, time-even multipoles 〈UK 〉 are called
polar. (Angular brackets denote the expectation value of the
enclosed quantum-mechanical operator.) Polar multipoles with
rank 0 and 1 have an immediate physical significance, for
chirality ≡ 〈U0〉 and displacement ≡ 〈U1〉. Parity-odd, time-
odd multipoles 〈GK 〉 are called magneto-electric by analogy
with a necessary condition for the magneto-electric effect that
the inversion is accompanied by time-reversal. The magneto-
electric monopole, 〈G0〉, is a magnetic charge [13, 14] while
the dipole, 〈G1〉, is an anapole, or toroidal moment. Table 1
lists composite quantum-mechanical operators that can be used
as cameos of parity-odd and parity-even multipoles.

The nature of the resonant event determines many
attributes of multipoles contributing to the measured Bragg
intensity. In keeping with standard practice in absorption
spectroscopy, absorption via the electron dipole and magnetic
dipole are labelled E1 and M1 (electric and magnetic dipole
operators are represented by polar (R) and axial (μ) vectors,
respectively, cf table 1). However, scattering is a two-stage
process and E1–E1 is the strongest process, unless forbidden
by selection rules. Many factors contribute to selection rules
in Bragg diffraction, which itself can only occur when a strict
geometric rule, involving the spacing of ions in a crystal
and the wavelength of illuminating radiation, is met (Bragg’s
law). Since E1 has a definite parity the E1–E1 event is
parity-even and it can only reveal electron properties with
the same condition. Electric and magnetic dipole moments
have opposite parities. Thus the E1–M1 event is parity-odd
and capable of revealing atomic polar and magneto-electric
multipoles.

Engaging an atomic resonance in diffraction has other
benefits. The atom type is labelled and the Bragg intensity
enhanced, making visible very small contributions, currently

at the level of one part in 108, which would otherwise
go undetected. Polarization analysis yields even more
valuable information because scattering channels with rotated
polarization, forbidden in Thomson scattering, can be different
from zero. In fact, chirality and magnetic charge reside
in rotated polarization channels (appendix B). Additionally,
intensities of space group forbidden, or weak, reflections
provide information not available from the real and imaginary
parts of the refractive index, namely, birefringent dispersion
and dichroism. Magnetic charge is not observed in dichroism
while chirality contributes to natural circular dichroism [6, 7].

Being parity-odd the E1 photo-electric event connects
atomic states with opposite parity. Direct observation of
multipoles possessed by d-like valence electrons, by resonant
Bragg diffraction, therefore demands absorption to occur at an
intermediate state that is p-like, which is called an L-state, or
L-edge. E1 absorption at an intermediate state which is s-like,
and called the K-edge, gives access to p-like valence states
at the absorption site that contain second-hand information of
minimal value on d-like multipoles.

In the following section, we summarize theoretical results
for a resonant scattering amplitude suitable for analysis of
Bragg diffraction and dichroism. Thereafter, in section 3, we
discuss the unit-cell structure factor with particular attention
to the E1–M1 resonant event, which has recently become
a subject of renewed interest. Our work is based on an
atomic model of the magnetic material, which has a long
and distinguished history in the theory of magnetism. In
general, scattering is enhanced by parity-even (E1–E1, E2–
E2) and parity-odd (E1–M1, E1–E2) resonant events and
our amplitudes respect global symmetries inherent from
quantum-electrodynamics. Comprehensive statements for
Bragg diffraction with rotation of the crystal (azimuthal-angle
scan) and E1–E1, E1–E2, and E2–E2 enhancements have
recently been published by us [15] and here we complement
this body of work with corresponding statements for Bragg
diffraction enhanced by an E1–M1 event. In section 4
we survey a few recent and representative experiments. A
discussion is given in section 5.

2. Resonant scattering amplitude

The scattering amplitude on which we base our work is
calculated from quantum-electrodynamics [6, 7, 16]. In
the derivation, the QED amplitude, or scattering matrix, is
developed in the small quantity E/mc2 where E is the primary
photon energy and mc2 = 0.511 MeV. At the second level
of smallness in this quantity the amplitude contains resonant
processes that may dominate all other contributions to the
amplitude should E match an atomic resonance with an
energy �. Assuming also that virtual intermediate states are
spherically symmetric [17–21], to a good approximation, the
scattering amplitude in the region of a resonance is of the form,

f ≈ Fμ′ν/(E −�+ i�/2) = Gμ′ν, (2.1)

where � is the total width of the resonance. In (2.1), Fμ′ν is a
unit-cell structure factor for Bragg diffraction in the scattering
channel with primary (secondary) polarization ν (μ′). We use
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Figure 1. Shown is the Cartesian coordinate system (x, y, z) adopted
for Bragg diffraction and the relation to states of polarization,
labelled σ and π , in the primary (unprimed) and secondary (primed)
beams of photons.

the standard convention of labelling these polarization states
(figure 1), in which σ -polarization is normal to the plane of
scattering and π -polarization is parallel to the plane.

The unit-cell structure factor, Fμ′ν , contains 〈 Ĵμ′(−q′)
Ĵν(q)〉 where Ĵν(q) is the current operator for electrons and a
primary (secondary) photon wavevector q(q′). The expectation
value of the product of current operators is performed with the
equilibrium, electron ground-state wavefunction. Evaluated
with q = q′ = 0 structure factors describes diffraction with
enhancement by E1 events. The first correction to the current
of electrons, in an expansion in terms of the wavevector,
introduces additional resonant contributions E1–M1, E1–E2,
E2–E2, etc.

The presence of spin, S, in the M1 operator allows
enhancement at a K-edge which would otherwise be forbidden
on account of zero orbital angular momentum, L. To
engage the M1 event in diffraction, or dichroism, valence and
intermediate states have common angular momentum, because
matrix elements of L and S are diagonal with respect to orbital
angular momentum. Thus absorption at a K-edge can engage
M1 when s-like valence states are available. In addition,
intermediate and valence states must not be orthogonal. Like
the other parity-odd event we discuss, E1–E2, the E1–M1 event
is allowed when valence states at the site of the resonant ion
are an admixture of orbitals with different parities, which can
occur when the site is not a centre of inversion symmetry. This
requirement on the resonant site for non-zero contributions to
Bragg diffraction from parity-odd events does not mean that
the crystal structure must be non-centrosymmetric.

Appendix A explores properties of parity-odd multipoles
using a specific model wavefunction by way of further
orientation to multipoles appearing in diffraction enhanced by
an E1–M1 event.

3. Unit-cell structure factor

The generic form of a unit-cell structure factor is,

Fμ′ν =
∑

K

JK
μ′ν · DK ·ΨK , (3.1)

where the spherical tensor JK
μ′ν describes the condition of

the primary and secondary photons, and there is a different
JK
μ′ν for each resonant event. The quantity DK in (3.1)

is a rotation matrix employed to orientate the crystal in
right-handed Cartesian coordinates (x, y, z) that describe the
scattering geometry (figure 1). We choose σ -polarization
parallel to the z-axis, and the Bragg wavevector (q − q′) anti-
parallel to the x-axis. The rotation matrix is a function of the
azimuthal angle, ψ , that measures rotation of the crystal about
the Bragg wavevector. Lastly in (3.1), ΨK is a structure factor
of the form,

ΨK =
∑

d

〈OK 〉d exp{id · (q − q′)}, (3.2)

where the sum is over all resonant ions in a unit cell of the
crystal. The Bragg condition for diffraction is met when the
wavevector (q − q′) coincides with a vector in the reciprocal
lattice for the crystal structure, τ (hkl). Equation (3.2) is
written in terms of multipoles 〈OK 〉 that might be parity-even,
denoted by 〈TK 〉, or parity-odd, namely, 〈UK 〉 or 〈GK 〉.

Expressions for JK
μ′ν appropriate for E1–E1, E1–E2 and

E2–E2 events have been given in previous publications.
Universal forms of Fμ′ν as a function of the azimuthal angle
are given in [15]. Here we follow on with the corresponding
information for E1–M1 [6, 7].

To this end, write DK as a product of two rotations, one
to orientate the crystal to the setting ψ = 0 in coordinates
(x, y, z), and one to rotate the crystal from this setting about
the Bragg wavevector. Denote by 	 Euler angles for the first
rotation. These angles are a function of the Bragg wavevector.
Orthonormal axes in the crystal to which the Bragg wavevector
is referred nominally coincide with (x, y, z). Axes of the
unit cell of the crystal are convenient for this purpose when
they are orthonormal while in the more general case, including
monoclinic and hexagonal structures, it is necessary to erect
orthonormal principal axes in the crystal that do not coincide
with edges of the unit cell. Following [15], we introduce
quantities AK ,Q and BK ,Q that are, respectively, even and odd
functions of the projection Q, namely,

AK ,Q + BK ,Q =
∑

q

DK
Q,q(	)Ψ

K
q ,

AK ,Q − BK ,Q =
∑

q

DK
−Q,q(	)Ψ

K
q .

(3.3)

By definition BK ,0 = 0.
In terms of these quantities a unit-cell structure factor is,

Fμ′ν =
∑

K

JK
μ′ν · DK (ψ) · (AK + BK ). (3.4)

The sense of rotation about the wavevector is counter
clockwise when the wavevector points to the observer, and at
the origin of the azimuthal-angle scan DK

Q,q(0) = exp{iπ(Q −
q)/2}d K

Q,q(0) = δQ,q .

For the E1–M1 event, JK
μ′ν is proportional to ÑK ,Q ± NK ,Q

and values of these factors are listed in table 2 for all μ′ν. With
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Table 2. Factors listed in the table appear in the unit-cell structure factor (3.5) for Bragg diffraction with enhancement by the E1–M1
resonant event. The angle θ is the Bragg angle with q · q′ = q2 cos(2θ). In figure 1, σ -polarization is normal to the plane of scattering,
parallel to the z-axis, and π-polarization is parallel to the plane. NK ,−Q = (−1)K+Q(NK ,Q)

∗ and ÑK ,Q satisfies the same identity.

ÑK ,Q − NK ,Q ÑK ,Q + NK ,Q

(σ ′σ)
K = 1, Q = 1 −i sin(θ) −cos(θ)
K = 2, Q = 1 −i sin(θ) −cos(θ)
(π ′π)
K = 1, Q = 1 i sin(θ) −cos(θ)
K = 2, Q = 1 −i sin(θ) cos(θ)
(π ′σ)
K = Q = 0 −2 cos2(θ)/

√
3 2 sin2(θ)/

√
3

K = 1, Q = 0 −i sin(2θ)/
√

2 −i sin(2θ)/
√

2
K = 2, Q = 0 {1 + 2 sin2(θ)}/√6 −{1 + 2 cos2(θ)}/√6
K = 2, Q = 2 1/2 1/2
(σ ′π)
From (π ′θ) through sign change
and θ ⇒ −θ From (π ′θ) through θ ⇒ −θ

ψ = 0, and K = 0, 1 and 2,

Fμ′ν(E1–M1) =
∑

K

i K−1
∑

Q

(−1)Q{−i[AK ,Q + BK ,Q](g)

× [ÑK ,−Q + NK ,−Q ] + [AK ,Q + BK ,Q](u)
× [ÑK ,−Q − NK ,−Q ]}. (3.5)

In this expression, labels g and u are attached to [AK ,Q +
BK ,Q] to indicate whether they are made from (3.2) with
multipoles 〈GK 〉 or 〈UK 〉, and the different combinations
ÑK ,Q + NK ,Q and ÑK ,Q − NK ,Q accompany magneto-electric
or polar multipoles. Appendix B contains values of Fμ′ν
(E1–M1) as a function of azimuthal angle, and [15] contains
corresponding unit-cell structure factors for E1–E1, E1–E2 and
E2–E2 resonant events.

By way of examples of structure factors for an E1–
M1 event, we record expressions appropriate for gallium
ferrate and Bragg reflections (0, k, 0) with odd Miller index
k. These reflections are forbidden by the space group and
such reflections are often referred to as weak reflections. Using
results for ΨK

Q for gallium ferrate derived by Lovesey et al [22],
and expressions for E1–M1 structure factors in appendix B,
one quickly finds Fσ ′σ (E1-M1) = Fπ ′π(E1-M1) = 0. For the
channel with rotated polarization we find,

Fπ ′σ (E1–M1) = −(iB/√2) sin(2θ) cos(ψ)〈U1,0〉
− (2A/

√
3) sin2(θ)〈G0,0〉

− (A/2
√

6){2 + cos2(θ)[1 + 3 cos(2ψ)]}〈G2,0〉
− (A/2){2 + cos2(θ)[1 − cos(2ψ)]}�〈G2,2〉, (3.6)

where ψ = 0, the origin of the azimuthal-angle scan, finds
the c-axis of the orthorhombic crystal normal to the plane of
scattering, and parallel to σ–polarization (figure 1). Multipoles
with projection Q = 0 are purely real. Complex quantities A
and B in (3.6) are fully determined by the crystal structure,
while θ is the Bragg angle (figure 1). The contribution to a
structure factor proportional to magnetic charge, 〈G0,0〉, does
not depend on the azimuthal angle, ψ , because charge is a
scalar entity with K = 0. Dependence of Fπ ′σ (E1-M1) on
the azimuthal angle is accomplished by a polar dipole, 〈U1,0〉,
and magneto-electric quadrupoles, 〈G2,Q〉.

Magnetic charge does not contribute to any dichroic signal
of which three, from a total of five, are parity-odd. In fact,
of all the multipoles in the structure factor (3.6) for Bragg
diffraction only magneto-electric quadrupoles 〈G2,2〉 can be
observed in a dichroic signal, specifically non-reciprocal linear
dichroism. General expressions for all five dichroic signals
are gathered in [23] which analyses the dichroism displayed
by copper metaborate in a magnetic field.

4. Experiments

In this section we present some recent experimental results that
demonstrate the sensitivity of resonant x-ray Bragg diffraction
to families of atomic multipoles representing the degrees of
freedom of electrons in the ground state.

4.1. UO2

The nature of the low temperature ground state of uranium
dioxide (Fm3̄m space group) has long been studied. Below
the Néel temperature TN = 31 K, a complicated magnetic
structure of the 3k variety is reported. Associated with
TN is also a rearrangement of the oxygen atoms [24].
Significant theoretical work was performed to explain this
rich behaviour [25–28]. All such theories emphasize the
importance of interplay between Jahn–Teller and quadrupolar
interactions.

However, direct measurement of quadrupolar ordering
proved elusive until the advantages inherent to resonant x-ray
Bragg diffraction were fully appreciated, e.g., site selectivity,
enhanced signal strength, and polarization analysis. An
elegant experiment by Wilkins et al [29] on UO2 provided
direct experimental evidence of ordering of the quadrupoles
associated with the uranium ions. By using resonant x-ray
diffraction, enhanced by the uranium M4-edge, Wilkins et al
[29] were able to measure directly the presence of quadrupolar
ordering. Exploitation of polarization analysis on the
secondary beam together with azimuthal-angle scans (rotation
of the sample about the Bragg wavevector) enabled the
separation of the magnetic and the non-magnetic quadrupole
contribution in the total intensity.
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Figure 2. (i) Schematic representation of the projection onto the a–b plane of the 3k magnetic and electric quadrupole ordering for the
longitudinal (L) and the two transverse configuration (T1 and T2). Magnetic moments are represented by arrows whereas the electric
quadrupole moments are shown as ellipsoids; (ii) integrated intensity as a function of the azimuthal angle for the (1, 1, 2) reflection measured
in the σ ′–σ channel (circles). The solid (dashed) line shows the expected azimuthal-angle dependence for the transverse (longitudinal) model
described in [29] from which the figure is reproduced.

Figure 3. Magnetic ordering on the Mn sublattice in phase (i) T = 35 K and phase (ii) T = 15 K of terbium manganate as suggested by
neutron scattering [30]. In phase (ii) a spiral phase violates parity (inversion symmetry) allowing an electric polarization, represented by an
arrow along c.

In the rotated channel, σ ′–π , both magnetic and
quadrupole contributions are present, but the magnetic one
overwhelms the quadrupolar one. Contrary to this observation,
in the unrotated channel, σ ′–σ , no magnetic contribution is
present [6, 16] and therefore the measured resonant intensity
can be ascribed entirely to quadrupole ordering. Through
the study of its azimuthal-angle dependence, it is found that
diffracted intensity can be explained as an incoherent sum
of two transverse domains (figure 2). The azimuthal-angle
dependence also rules against Thomson (charge) scattering,
as it is not expected to show any azimuthal dependence.
In this example of resonant Bragg diffraction, the technique
provided key evidence in favour of quadrupolar ordering with
the directness peculiar only to it.

4.2. TbMnO3

TbMnO3 has recently attracted much attention because of its
multiferroic properties [12]. In an interval of temperature

28 K < T < 41 K, which we call phase (i), magnetization
exists on the Mn sublattice which is collinear, polarized along
b, and incommensurate with a wave vector q ∼ 0.28b∗
(figure 3(i)), while Tb ions are not magnetically ordered.
Long-range magnetic order is accompanied by a modulation
of the Mn sublattice with sinusoidal displacements along
c. Within the temperature range 7 K < T < 28 K,
called phase (ii), modifications create a multiferroic state.
A spatially varying electric dipole moment, associated with
Mn displacements, undergoes a first-order transition to a
ferroelectric phase that contributes spontaneous polarization
along c (figure 3(ii)). Simultaneously, magnetization on the Mn
sublattice becomes non-collinear with a component along c.
Terbium magnetic moments in phase (ii) display non-collinear
order, with transverse polarization along a and wave vector q.

Observation of a magnetically controlled ferroelectric
polarization in terbium manganate demonstrates a giant
magneto-electric effect [9]. Below 7 K, labelled phase (iii),
Tb moments adopt the same configuration as in phase (ii) but

5
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the wave vector is distinctly different, namely, q′ ∼ 0.42b∗.
Here we concentrate on recent resonant x-ray Bragg diffraction
studies [31, 32].

In an effort to understand modifications to terbium
manganate occurring in the different phases, many azimuthal-
angle scans as well as energy dependence at the Mn K- and
Tb L3-edges were collected. Let us recall major findings. In
phase (i) Mannix et al [32] found A-type (0, 4 ± q, 1) and F-
type (0, 4 ± q, 0) reflections at the Mn K- and Tb L3-edges,
and only A-type reflections with a primary photon energy far
from absorption edges. Presence of diffracted intensity at the
Tb L3-edges is attributed to Tb 5d-state polarization induced
by ordering of Mn magnetic moments.

The development of a non-collinear Mn substructure in
phase (ii) removes inversion symmetry. An E1–E2 scattering
channel is then allowed in resonant x-ray Bragg diffraction.
Indeed, pronounced differences in energy spectra collected at
the Mn K- and Tb L3-edges are clearly visible (figures 10, 13
and 14 in [32]). A new set of satellite reflections (0, 3 ±
q, 0), associated with non-collinear ordering (C-type), was
observed at the Tb L3-edge but not at the Mn K-edge. These
experimental observations have been successfully analysed
by Scagnoli and Lovesey [15] using the formalism described
here in equations (3.3) and (3.4). This method of attack
on the data does not rely on knowledge of the space group
symmetry of the low temperature phases of TbMnO3, which
is not precisely known. Figure 4 shows a calculated azimuthal-
angle dependence of the C-type reflection (0, 3 + q, 0) in
the rotated channel of polarization in the vicinity of the Tb
L3-edge. Good agreement between calculated and observed
intensities is evident. Scagnoli and Lovesey [15] show that
the low temperature satellite reflections originate from dipole–
dipole (E1–E1) and dipole–quadrupole (E1–E2) events, while
the quadrupole–quadrupole (E2–E2) event can be excluded.
Presence of the E1–E2 event in diffraction suggests an intricate
coupling between charge and magnetic degrees of freedom in
terbium manganate.

4.3. Right- or left-handed?

Enantiomers, or stereoisomers, have crystal structures that
are mirror images of each other and are thus handed, like
our right and left hands. Physical properties of enantiomers
are identical except for optical activity, which rotates linearly
polarized light by equal amounts but in opposite directions.
While conventional x-ray Bragg diffraction can determine
crystal structures, it does not distinguish right- and left-handed
crystals. However, resonant x-ray diffraction, using circularly
polarized x-rays, can reveal the handedness of crystals through
a coupling of x-ray helicity with the enantiomorphic screw-
axis.

Sensitivity of resonant x-ray Bragg diffraction to the
handedness of crystals is readily inferred by examination of
the scattered intensity. We describe x-ray polarization by
Stokes parameters P2 and P3 [6, 7] and with full polarization
(P2)

2 + (P3)
2 = 1. The parameter P2 is the mean helicity in

the beam, and P3 is the linear polarization with P3 = +1(−1)
corresponding to complete linear σ -polarization normal (π -
polarization parallel) to the plane of scattering (figure 1).

Figure 4. Data collected in the π ′–σ channel at a C-type reflection
(0, 3 + q, 0) in phase (ii) are reproduced from figure 20 in Mannix
et al [32]. Data were gathered with a primary energy corresponding
to the E1–E1 event around 7.520 keV in the vicinity of the Tb
L3-edge. Solid curve is a fit to intensity proportional to the
expression (t − cosψ + d cos 2ψ + u sinψ + w sin 2ψ)2 developed
by Scagnoli and Lovesey [15] who provide the physical origin in
terms of atomic multipoles of the various parameters. The origin of
the azimuthal angle, ψ , is denoted by a vertical line, displaced by
90 ◦ from the origin used by Mannix et al [32].

With this notation, the total intensity from a primary beam
endowed only with circularly polarization (P1 = P3 = 0) is,

I0 = P2 Im{(Gσ ′π )
∗(Gσ ′σ )+ (Gπ ′π)

∗(Gπ ′σ )}
+ 1/2{|Gσ ′π |2 + |Gσ ′σ |2 + |Gπ ′π |2 + |Gπ ′σ |2}, (4.1)

where an amplitude Gμ′ν is defined in (2.1), and ∗ denotes
complex conjugation. For Thomson scattering the coefficient
of P2 is identically zero, because there are no contributions
to diffraction in channels with rotated polarization, σ ′–π and
π ′–σ . However, the coefficient can be different from zero for
resonant diffraction since all four channels of scattering may be
different from zero. Such is the case when the crystal contains
an enantiomorphic screw-axis. Thanks to the specificity of
resonant Bragg diffraction, Tanaka et al were able to reveal
the handedness of quartz enantiomers [33].

Quartz illustrated in figure 5 uses sites with multiplicity 3
and Wyckoff letter a for silicon ions in P3121 (#152, right-
handed, R in the following) and P3221 (#154, left-handed,
L in the following). It is possible to show [21] for the
reflection (0, 0, l) that structure factors ΨK (equation (3.2)) of
the enantiomorphic space-group pair obey the identity,

ΨK
Q(#154) = (−1)KΨK

−Q(#152), (4.2)

that in turn leads to structure factors which satisfy,

Fμ′ν(#152, ψ) = ±{Fμ′ν(#154, ψ)}∗, (4.3)

with the plus (minus) for a parity-even (odd) event. If we
look back at equation (4.1) for the total intensity I0, it follows
from (4.3) that the coefficient of P2 is of opposite sign for
the enantiomers (the reader is advised to consult [21] for the
complete Fμ′ν). In other words, in diffraction enhanced by
a single resonant event, circular polarization (x-ray helicity)
and crystal chirality are directly coupled. Sign differences
in (4.3) are a simple and direct consequence of differences
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Figure 5. Views of atomic structure in R quartz (right) and L quartz
(left) along the a axis and the b axis, respectively. The a and b axes
are normal to the plane of paper. Large and small spheres represent
Si and O atoms, respectively. Lines show the unit cell with hexagonal
axes. Reproduced from [33]. Copyright 2008 by the American
Physical Society.

between JK
μ′ν (which describes the condition of the primary

and secondary photons in equation (3.1)) for the two types of
resonant event considered.

Figure 6 shows integrated intensity at the reflection
(0, 0, 1) as a function of azimuthal angle, ψ , from R and
L forms of quartz. A sinusoidal modulation exhibiting
threefold periodicity of the enantiomorphic screw-axis is
observed. Integrated intensity for R quartz for incident left
circular polarization (LCP) and that of L quartz for right
circular polarization (RCP) are comparable, and there is a
pronounced intensity modulation on sweeping the azimuthal
angle. By inverting the primary polarization, respectively for
the two crystals, the integrated intensities are still comparable
with each other, while the intensity modulation has almost
disappeared. The presence of this asymmetry is attributed by
Tanaka et al [33] to an admixture of E1–E1 and E1–E2 events.
If only one event contributed to diffraction, intensities for LCP
and RCP for a given form of quartz would exhibit an antiphase
relation with each other, with the same intensity variation as
a function of the azimuthal angle. Similar arguments would
apply if we consider L and R quartz with the same primary
circular light.

While helicity of x-rays cannot couple to Thomson scat-
tering, because it is diagonal with respect to photon polariza-
tion, helicity may couple to chirality in the configuration of
magnetic moments. We consider scattering from pure spin mo-
ments whose spatial Fourier transform is S(k) = �S j exp(ik ·
R j) with k = q − q′ and k anti-parallel to the x-axis, as
depicted in figure 1. The coefficient of P2 in the cross-
section for total scattering is proportional to a component of
the static correlation function made from a vector product of
S(k) and its Hermitian conjugate, namely, the x-component of
〈S(−k) × S(k)〉 where S(−k) is the Hermitian conjugate of
S(k). The fact that this time-even correlation function appears
in the cross-section multiplied by x-ray helicity is proof that
it is a chiral order parameter. From expression (8.93) in [16]
for the partial differential cross-section one finds a total cross-
section for scattering from spins,

dσ/d = i4(re E/mc2)2 cos2(θ) sin3(θ)P2

× 〈η · {S(−k)× S(k)}〉, (4.4)

Figure 6. Shown are integrated intensities of the reflection (0, 0, 1)
of R and L quartz as a function of azimuth angle ψ . Filled (open)
circles represent the intensity of R quartz measured with LCP (RCP)
primary beam, and filled (open) triangles represent the intensity of L
quartz measured with RCP (LCP) primary beam. Each continuous
line is a fit to data. Insets show 2θ-scan profiles of the reflection
(0, 0, 1) observed with ψ = 0◦. Reproduced from [33]. Copyright
2008 by the American Physical Society.

Figure 7. The crystal structure (space group Pc21n) of gallium
ferrate (GaFeO3).

where the unit vector η = k/k, re = 0.282 × 10−12 cm
is the classical radius of the electron and E is the x-ray
energy. In (4.4), 2θ is the angle through which x-rays are
deflected. The trigonometric function cos2(θ) sin3(θ) vanishes
at the extremes, θ = 0◦ and 90◦, and has its maximum when
2θ = 101.54◦ at which it achieves a value = 0.19.

4.4. GaFeO3

At room temperature, the orthorhombic structure (space group
Pc21n) of gallium ferrate (GaFeO3) belongs to the C2v polar
crystal class [34, 35] with spontaneous electric polarization
along the b axis (figure 7). Sites in this structure occupied
by Fe ions (3d5) have no symmetry. Below a temperature
≈200 K, collinear ferrimagnetism [36] and the magneto-
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electric effect [12, 37] develop, with the magnetic easy-axis
along the crystal c axis.

Results for gallium ferrate derived from dichroic signals,
gathered in the optical [38] and x-ray [39] regions of energy,
and x-ray Bragg diffraction enhanced by the iron K-edge
resonance [40] appeared recently. Here, we focus our attention
on results derived from resonant Bragg diffraction. With the
use of an ac magnetic field (strength 50 mT and frequency
10 Hz) applied along the magnetization easy-axis, Arima
et al [40] took advantage of interference properties intrinsic
in resonant diffraction.

The diffracted intensity I1(I2) for a given Bragg reflection
was measured for magnetic field orientation parallel (anti-
parallel) to the magnetization easy-axis, and the intensity
difference �I = I1 − I2 was then considered. The advantage
of considering the intensity difference, �I , is that time-even
quantities (whose sign does not change with reversal of the
polarity of the applied magnetic field) cancel out, leaving an
intensity strongly depending on the (usually) weak magneto-
electric contributions (E1–E2 and E1–M1). Arima et al [40]
invoke the presence of toroidal moments (represented here by
the anapole 〈G1〉 in table 1) associated with an E1–E2 event
to explain the observed data. Subsequent ab initio calculations
by Di Matteo and Joly [41] underlined the possible presence
of octupoles as well as magnetic quadrupoles. However, their
simulation does not represent the experimental results at all
well.

Lovesey et al [22] overcame all the apparent difficulties
and interpreted the data successfully. Introduction in
the scattering amplitude (following the method outlined in
sections 2 and 3) of an additional term responsible for E1–
M1 scattering was vital to reproduce the experimental results.
Figure 8 illustrates the good agreement between the calculated
energy dependence and the experimental data of all specular
reflections measured. Lovesey et al [22] also explain the
dichroic signals at the Mn K-edge [39] and in the optical
region [38]. It is important to stress once more that the
presence of such contributions is possible because GaFeO3

possesses a non-centrosymmetric crystal structure and sites
occupied by Fe ions have no symmetry.

5. Discussion

We reviewed some recent experimental findings derived from
resonant x-ray Bragg diffraction. It is a versatile technique
that can be applied to different materials, ranging from
antiferromagnetic to multiferroic systems. Taking advantage
of element and site specificity, polarization analysis and
azimuthal-angle scans, resonant x-ray Bragg diffraction proves
itself an ideal tool to investigate subtle and enigmatic ordering
of charge and magnetic phenomena. As every powerful tool,
it has its drawbacks, and usually experiments prove extremely
difficult to perform. In this respect, neutron Bragg diffraction
is a handier tool to determine both the configuration and
distribution of magnetization in a crystal [42]. However, when
considering physical effects originating from subtle changes
to the structure of materials (electronic and crystallographic),
resonant x-ray diffraction is second to none.

Figure 8. Experimental data on a field difference of intensities �I/I
from gallium ferrate. Sample temperature 50 K, and data are for
reflections (0, k, 0) with Miller indices k = 2, 4 and −4. Continuous
curves are fits to a theoretical simulation developed by Lovesey
et al [22].

Small changes in electric and magnetic degrees of freedom
cannot be easily detected with ordinary techniques, such
as x-ray high-resolution powder diffraction. An example
is TbMnO3 whose orthorhombic Pbnm structure proves
incompatible with the multiferroic effects observed on the Mn
site. In this space group, sites occupied by Mn ions possess an
inversion symmetry that does not allow admixture of orbitals
of different parity, a key ingredient to multiferroicity. With
resonant x-ray diffraction such symmetry breaking effects are
relatively easy to detect.

Understanding magneto-electric and allied effects in
complex materials brings to play composite atomic variables
constructed from charge and magnetic electron degrees-of-
freedom. The role of these quantities, readily calculable
as outlined in sections 2 and 3, are of fundamental
importance in understanding electronic phenomena at the
atomic level. In order to better identify which particular
multipole (see section 3) is contributing to a given extent
to the scattering amplitude, experiments in the soft x-ray
regime might have an important role to play. As an example,
observation of the forbidden (0, k, 0) reflection with Miller
index k = 1 from multiferroic gallium ferrate (GaFeO3),
enhanced by Fe absorption L-edges at ≈710 eV, might give
decisive information on multipoles contributing to the E1–M1
scattering amplitude (3.6). Notably, predicted strange atomic
multipoles that are both time-odd and parity-odd (table 1),
include a magnetic charge, 〈G0〉, and a magnetic quadrupole,
〈G2〉.
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Appendix A

Contributions to resonant x-ray diffraction enhanced by the
E1–M1 event are explored with a model wavefunction for
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the equilibrium, ground state of a resonant ion. The
wave function chosen for this exercise is an admixture of
p-like and d-like single-particle, atomic states. Mixing
parameters may originate from several sources, including, odd-
order contributions to the crystal electric field, configuration
interaction and covalency. There are two d-states, with angular
symmetry yz plus z2, chosen so that a parity-even quadrupole
that may appear in the E1–E1 structure factor is different
from zero while the orbital angular momentum is zero. (The
parity-even quadrupole contributes Templeton and Templeton
scattering [1, 3, 5].) For a p-state we choose |l ′, 0〉 with angular
momentum l ′ = 1 which has z-like angular symmetry and
no orbital angular momentum because the projection = 0.
Mixture of the states |l, 0〉 and |l ′,m〉 with l = 2 and l ′ = 1 in
the wavefunction allow parity-odd multipoles to be different
from zero. Electron spin is saturated with a wavefunction
|s = 1/2, ms = 1/2〉.

The complete wavefunction for the resonant ion is product
state,

ℵ1/2|s = 1/2,ms = 1/2〉{|l, 0〉 + ib(|l,+1〉
+|l,−1〉)/√2 + f |l ′, 0〉}, (A.1)

with the normalization ℵ determined by ℵ(1 + b2 +| f |2) = 1.
In (A.1), the parameter f is allowed to be a complex number,
f = f ′ + i f ′′, and it measures mixing of the two states with
opposite parity.

To learn more about the model wavefunction we consider
expectation values of cameo monopoles and dipoles listed in
table 1. The parameter b in (A.1) is chosen to be purely
real and consequently expectation values of the orbital angular
momentum are zero, i.e., 〈Lβ〉 = 0 for β = x, y or z leading
to 〈μβ〉 = 0 for β = x or y and 〈μz〉 = 1.

Next, consider expectation values of parity-odd operators
related to the mixing parameter f . Let us start with polar
multipoles. One finds the model state possesses chirality
proportional to the imaginary part of f ,

〈μ · Ω〉 = −8ℵ f ′′/
√

15, (A.2)

while polar dipoles 〈U1〉 = 〈R〉 that do not vanish are
proportional to the real part of f , namely,

〈Rx 〉 = 0, 〈Ry〉 = 2ℵbf ′/
√

5, 〈Rz〉 ≡ 〈R0〉 = 4ℵ f ′/
√

15.
(A.3)

Note that 〈Ry〉 = 0 if b = 0, and in this limit chirality and
the displacement 〈Rz〉 can be different from zero. Turning
to magneto-electric multipoles, we learn that (A.1) possesses
magnetic charge if the real part of f is different from zero. The
result,

〈μ · R〉 = 4ℵ f ′/
√

15, (A.4)

can actually be deduced from (A.2) using a relation given with
table 1 between equivalent operators representing chirality and
magnetic charge. Components of the anapole possessed by the
state (A.1) are,

〈x 〉 = −4ℵbf ′/
√

5, 〈y〉 = −8ℵbf ′′/
√

5,

〈z〉 = −16ℵ f ′′/
√

15.
(A.5)

Results (A.2)–(A.5) illustrate correlations that can exist
between polar and magneto-electric multipoles.

Operators in table 1 are cameo operator equivalents
for atomic quantities of interest in understanding electron
degrees of freedom in scattering and dichroic signals that
engage a parity-odd event. To construct operators that
generate quantities actually observed one must work with
the appropriate scattering amplitude, which is a complicated
animal [6, 7]. The dependence of a unit-cell structure factor
on the total angular momentum of the intermediate state, Jc,
is the same for both parity-even and parity-odd events. Proof
of this statement for parity-odd structure factors is non-trivial
for it uses new identities for 12 j Racah symbols [45, 46]. The
very simple dependence of structure factors on Jc yields the
celebrated sum rules derived by Thole and collaborators for
dichroic signals created by parity-even events [43, 44].

Observed multipoles are defined by reference to the
scattering amplitude. Let ϒK ,Q denote the electron operator
appearing in the parity-odd amplitude [6, 7, 46]. The relation
to our polar and magneto-electric operators is,

ϒK ,Q = iK−1UK ,Q − iK G K ,Q . (A.6)

Unlike ϒK ,Q , polar and magneto-electric operators possess,
by design, definite parity and definite time-reversal signatures.
Using our model wavefunction (A.1), the polar multipole in the
E1–M1 structure factor (3.6) is,

〈U1,0〉 = 0 : L2 edge,

〈U1,0〉 = √
(1/30)ℵ f ′ : L3 edge.

(A.7)

Notable is the null value of 〈U1,0〉 at the L2-edge, whereas
〈U1,0〉 at the L3-edge and 〈R0〉 in (A.3) may be different from
zero.

Magnetic charge that can be observed in the state (A.1) is
found to be,

〈G0,0〉 = (1/9)
√
(1/5)ℵ f ′ : L2 edge,

〈G0,0〉 = (2/9)
√
(1/5)ℵ f ′ : L3 edge.

(A.8)

It can be shown that, the contribution to a structure factor
from a monopole is proportional to (2Jc + 1) [46]. This
result is illustrated in (A.8) by values for 〈G0,0〉 at the L2-
edge (Jc = 1/2) and the L3-edge (Jc = 3/2). Thus a more
fundamental statement is that the monopole contribution to a
polar structure factor is proportional to {(2Jc + 1)〈μ ·〉}, and
the corresponding contribution to a magneto-electric structure
factor is proportional to {(2Jc+1)〈μ·R〉}. For magneto-electric
quadrupoles we find,

〈G2,0〉 = (1/9)
√
(2/5)ℵ f ′ : L2 edge,

〈G2,0〉 = (2/5)
√
(2/5)ℵ f ′ : L3 edge,

(A.9)

where the dependence on Jc is different from that found for
a monopole. The multipole 〈G2,2〉 is zero at both edges
because (A.1) does not permit Q = ±2.
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Appendix B

E1–M1 unit-cell structure factors listed here are calculated
from (3.4) and (3.5) using the Wigner rotation matrix
DK

Q,q(ψ) = exp{iπ(Q−q)/2}d K
Q,q(ψ), and x-ray factors listed

in table 2. Expressions given here have been cross-checked
with two independent calculations. The one significant
difference between E1–M1 and E1–E2 unit-cell structure
factors is that Fπ ′σ (E1–M1) is a function of AK ,Q while
Fπ ′σ (E1–E2) is a function of both AK ,Q and BK ,Q .

Polar; 〈UK ,Q〉
Fσ ′σ = sin(θ)[−2iB1,1 + i

√
(3/2) sin(2ψ)A2,0

− 2 cos(2ψ)A2,1 + i sin(2ψ)A2,2].
Fπ ′σ = (2i/

√
3) cos2(θ)A0,0 − (i/

√
2) sin(2θ) cos(ψ)A1,0

− sin(2θ) sin(ψ)A1,1 + i/(2
√

6)[3(1 + sin2(θ)) cos(2ψ)

− cos2(θ)]A2,0 + (1 + sin2(θ)) sin(2ψ)A2,1 + (i/2)

× [(1 + sin2(θ)) cos(2ψ)+ cos2(θ)]A2,2.

Fσ ′π (θ) = −Fπ ′σ (−θ).
Fπ ′π = sin(θ)[2iB1,1 + i

√
(3/2) sin(2ψ)A2,0

− 2 cos(2ψ)A2,1 + i sin(2ψ)A2,2].
Note (a) Fσ ′σ and Fπ ′π are the same apart from the sign
of B1,1 (b) Fσ ′π and Fπ ′σ are composed of AK ,Q and not
BK ,Q . Moreover, these unit-cell structure factors are the same
apart from signs attached to the pseudo-tensors, i.e., in the
two channels with rotated polarization chiral quantities have
opposite signs.

Magneto-electric; 〈G K ,Q〉
Fσ ′σ = cos(θ)[−√

2 sin(ψ)A1,0 − 2i cos(ψ)A1,1

− 2 cos(ψ)B2,1 + 2i sin(ψ)B2,2].
Fπ ′σ = −(2/√3) sin2(θ)A0,0 − (1/

√
2) sin(2θ) cos(ψ)A1,0

+ i sin(2θ) sin(ψ)A1,1 − 1/(2
√

6)

× [2 + cos2(θ)(1 + 3 cos(2ψ))]A2,0

+ i cos2(θ) sin(2ψ)A2,1 + (1/2)

× [2 + cos2(θ)(1 − cos(2ψ))]A2,2.

Fσ ′π (θ) = Fπ ′σ (−θ).
Fπ ′π = cos(θ)[−√

2 sin(ψ)A1,0 − 2i cos(ψ)A1,1

+ 2 cos(ψ)B2,1 − 2i sin(ψ)B2,2].
Note (a) Fσ ′σ and Fπ ′π are the same apart from the signs
of BK ,Q and (b) Fσ ′π and Fπ ′σ are composed of AK ,Q and
not BK ,Q . Moreover, these structure factors are the same
apart from signs attached to the true-tensors. Thus in the two
channels with rotated polarization magnetic charge, A0,0, is the
same.

Appendix C

Parity; one discrete symmetry of a variable is its behaviour
with respect to inversion of spatial coordinates, when Cartesian
components x, y, z → −x,−y,−z. A variable is parity-even
(parity-odd) if it is unchanged (changes sign) by inversion.
The position variable, R = (x, y, z), is a polar vector
(dipole) and parity-odd. Spin and orbital angular momentum

are parity-even, i.e., these dipole variables behave as axial
vectors. The product of charge conjugation (by which we mean
particle–antiparticle conjugation), parity, and time-reversal is
denoted by CPT. Because of relativistic invariance, the CPT
transformation always commutes with the Hamiltonian. For
the C and P (and therefore T ) transformations separately,
experiment shows that the electromagnetic interactions are
invariant.

Time-reversal; time-reversal applied to momentum or
electron spin changes the sign, and variables with this property
are called time-odd. Time-even variables do not change sign
under time-reversal, e.g., the position of an electron. The spin,
S, satisfies the commutation relation S × S = iS, with i =√
(−1). Thus (iS) is time-even because it is a (vector) product

of identical operators possessed of a definite time-reversal
signature, namely, odd. A magnetic field (electric field) is time-
odd (time-even). Zeeman and electric dipole interactions are
unchanged by time-reversal for each interaction is a product of
two variables that behave in the same way under time-reversal.

Helicity and chirality; a variable or material that has right-
handed or left-handed quality, which is not superposable on its
mirror image, is said to possess helicity or chirality. Helicity
is a parity-odd and time-even property. The helicity of light
is often quoted in terms of a Stokes parameter that is a purely
real, pseudo-scalar and time-even quantity. A magnetic field is
not handed, and a magnetic field by or in itself does not resolve
an achiral (racemic) mixture.

Rank of a tensor (multipole), K ; the integer K = 0, 1, . . . ,
etc is the rank of a tensor, or multipole. The size of the
family of multipoles available in a resonant scattering event
is governed by the rank of the absorption events engaged in
scattering; values of K allowed in a family are given by the
sum of the ranks of the events and this sum follows the triangle
rule for addition of angular momentum in quantum mechanics.
E.g., E1 is a (electric) dipole and corresponds to K = 1, and
the E1–E1 event is a sum of two dipoles that generate a family
of multipoles with rank K = 0, 1 and 2. The same result holds
for E1–M1 because E1 and M1 are both dipoles. The operator
for E2 is a quadrupole (K = 2) and the family of multipoles
engaged by an E1–E2 event comprises a dipole, quadrupole
and an octupole (K = 3).

Polar multipole 〈UK 〉; this atomic multipole is constructed
such that it is time-even and parity-odd for all K (rank of a
multipole). The dipole 〈U1〉 thus has properties with respect
to inversion and time-reversal that match properties of the
position vector, R. The polar multipole with K = 0 is a scalar
quantity that by construction is both parity-odd and time-even,
i.e., a time-even, pseudo-scalar. 〈U0〉 can be different from zero
for electron structure that is chiral, and it is zero for an achiral
structure. Thus 〈U0〉 has properties with respect to inversion
and time-reversal that match helicity, or chirality. The sum of
〈U0〉 for every ion in the unit cell of a crystal, which is a unit-
cell structure factor, can be different from zero if the crystal
belongs to one of the 11 enantiomorphic crystal classes, and it
is zero for all other 21 crystal classes.

Maxwell’s equations; there is a strong symmetry between
electric field and magnetic field, yet a magnetic charge
analogous to electric charge is peculiarly absent from
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Maxwell’s equations [13, 14]. The source of a magnetic field
is either a moving electric charge or a static magnetic dipole,
never a static magnetic charge it would seem. If Maxwell’s
equations are symmetrized by the introduction of magnetic
charge, this charge must be such that it is reversed by each
of the discrete symmetries in CPT.

Magneto-electric multipole 〈GK 〉; this atomic multipole
is constructed such that it is time-odd and parity-odd for
all K . The magneto-electric dipole has properties that match
properties of an anapole, e.g., spin anapole = S×R = −R×S
where S is spin. Related to the anapole is the magneto-
chiral effect under consideration as a mechanism for the homo-
chirality of life [49]. The magneto-electric multipole with
K = 0 is a scalar, or charge, that is both parity-odd and time-
odd, symmetry properties it has in common with magnetic
charge [13].

Scattering, dichroism and birefringence; scattering and
absorption (dichroism) are two sides of one coin because
both are directly related to the scattering amplitude. The
absorption coefficient is proportional to the total cross-section
for scattering. A fundamental identity, called the optical
theorem, relates the total cross-section in question and the
imaginary part of the scattering amplitude evaluated for
forward scattering, in which the beam of light is not deflected
by the sample. Very often dichroic signals are expressed as
the imaginary part of the refractive index. Birefringence can
be likened to the other half of dichroism being related to the
real part of the refractive index and the two signals, dichroism
and birefringence, are mathematically related by a Kramers–
Kronig transform. Dichroism and birefringence are bulk
properties of a material. Thus signals are confined by elements
of symmetry found in the point group of a crystal, and there
are 32 non-magnetic point groups (crystal classes). The cross-
section for scattering in to an element of solid angle subtended
by the sample is proportional to square of the absolute value
of the scattering amplitude. Bragg diffraction is confined by
elements of symmetry in the space group. There are 230 non-
magnetic space groups of which 11 are enantiomorphic space
group pairs, and 65 Sohncke space groups that belong to one
or other of the enantiomorphic crystal classes. A book by
Cracknell [47] is recommended for symmetry properties of
magnetic crystals.

Total scattering; with increasing energy of the primary
x-ray beam all states of a material are sampled, energy
exchange with it becomes ever more a marginal effect, and total
scattering is measured. An alternative point of view is that,
with high energy x-rays an instantaneous picture of the material
is observed. In which case, in the partial differential cross-
section it is legitimate to set the time variable in the correlation
function equal to zero; see, for example, section 8.9 in [16].
The total magnetic scattering of neutrons has a cross-section
analogous to (4.4) and it is (η · P)i〈η · {S(−k)× S(k)}〉 where
P is polarization in the beam [48]. Since the variables P and

spin have the same properties it follows that the scalar product
(η · P) is a time-even pseudo-scalar like photon helicity.
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